Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(1): 184-200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35896874

RESUMO

Urban tropical lagoons are often impacted by eutrophication, metal, and polycyclic aromatic hydrocarbon (PAH) contamination, but the toxicity of their bottom sediments is still poorly investigated in South America. Aiming to contribute to filling this gap, a sediment quality assessment was conducted in the Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence (LOEs) including sediment characterization, determination of metals and PAHs, and acute toxicity testing with burrowing amphipods (Tiburonella viscana). Mud and organic matter contents played a crucial role in contaminant distribution along the lagoon. The concentrations of PAH were generally low (mean ΣPAH = 795.42 ± 1146.2 ng/g; n = 23), but a contamination hotspot of light PAH compounds was identified. Such PAHs were mainly pyrolytic, probably related to the deposition of atmospheric pollution, although petrogenic compounds also occur in the lagoon. The data indicated the occurrence of geochemical anomalies of Zn, Cu, Pb, and Hg (mean values = 176.9 ± 91.6, 45.1 ± 21.3, 35.2 ± 15.0, 0.1442 ± 0.0893 mg/kg, respectively; n = 23), probably associated with industrial wastes, garbage deposition, urban runoff, and domestic sewage contributions. The mortality of T. viscana was significant for more than 85% of the samples (mean mortality = 70.3 ± 26.0%; n = 23), but it was not significantly correlated with PAH and metal concentrations. On the other side, domestic sewage contributions and eutrophication seem to play a relevant role in sediment toxicity. Actually, the toxicity observed in the tests seems to be due to the simultaneous influence of multiple toxicants and their combined effects on the organisms. Such stressors may include not only metals, PAH, and eutrophication but also chemicals not evaluated in this study, such as hormones, pharmaceuticals and personal care compounds, perfluorocompounds, detergents, and others.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Brasil , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Estuários , Esgotos , Metais/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Environ Sci Pollut Res Int ; 28(4): 4515-4530, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944860

RESUMO

Over the last decades, the Rodrigo de Freitas Lagoon (RFL), Rio de Janeiro, Brazil, has been impacted by the release of untreated domestic sewage, causing eutrophication processes with negative effects on its biota. Recently, the RFL underwent urban interventions to fulfill the demands of the 2016 Olympic Games, which included building the waist gallery and monitoring clandestine waste discharges into the underground drainage network. Organic-source tracing methods can be successfully used to characterize the organic matter transported from the urbanized areas to the RLF. The application of the elemental (C, N) and stable isotope (δ15N and δ13C) fingerprint methods in sediments from the RLF indicated a reduction in the domestic sewage inputs from 32 ± 16 to 12 ± 13% between 2015 and 2017. However, the sewage inputs continue being worrying. Our results also suggest that the main source of organic matter pollution in the lagoon comes from indiscriminate domestic sewage release from river channels. Secondary pollution sources are associated with the underground drainage network that still shows punctual and irregular releases of domestic sewage. Petroleum products, mainly from sewers, also show as possible organic pollution sources. Finally, the findings indicate that the interventions carried out in the RFL are promising. However, they were insufficient to cease the pollutant inputs and mitigate the negative impacts of eutrophication.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Brasil , Monitoramento Ambiental , Isótopos , Esgotos , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 252(Pt A): 270-280, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154241

RESUMO

The Rodrigo de Freitas Lagoon (RFL - Rio de Janeiro, RJ, Brazil) is a highly polluted and eutrophic lacustrine system, which has been often used for the practice of aquatic sports, including during the 2016 Summer Olympic Games. This study proposes the evaluation of metal concentrations in surface sediments from the RFL before and after urban interventions performed for the 2016 Olympics, as well as their toxicity to the benthic amphipod Tiburonella viscana and embryos of the sea-urchin Echinometra lucunter. Metal concentrations determined in 2017 were significantly higher than those obtained in 2015 (especially Cu, Cd and Ni), suggesting that the interventions performed to fulfill the requirements of the Olympics increased metal contents in sediments. The sediments from the northern sector of the RFL were muddier, more organically enriched, exhibited higher metal concentrations and were more toxic to T. viscana when compared to the sediments collected in the southern sector. This fact is particularly important since the practice of sports, including during the 2016 Olympics, has been preferably performed in the northern sector. Metal distribution was strongly correlated with organic matter and mud contents. The toxicity to E. lucunter embryos was high for both northern and southern sediments; most of the samples led to 100% lack or abnormal embryonic development. The integration of physical, chemical and ecotoxicological data indicates that the mortality to T. viscana was correlated with metal contents, whereas the toxicity to E. lucunter was apparently related to the release of ammonia from the sediment to water column. Finally, high metal concentrations and the toxicity to aquatic organisms evidence the ecological risks to the biota from RFL.


Assuntos
Anfípodes/efeitos dos fármacos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais/toxicidade , Ouriços-do-Mar/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Brasil , Ecotoxicologia , Metais/análise , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 25(34): 34496-34509, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311116

RESUMO

The toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro, Brazil) was evaluated using acute bioassays with Eisenia andrei and metal determination. The sediments were collected in August 2014 (winter) and February 2015 (summer) and in five areas distributed along the Bay: Port of Rio de Janeiro, Port of Niterói, Meriti River mouth, Iguaçu River mouth, and the Environmental Protection Area (APA) of Guapimirim. The sediments were mixed with a ferralsol (a representative Brazilian tropical soil) in proportions varying between 0 (pure soil) and 30%. The acute bioassays with E. andrei followed a standard protocol (ISO 11268-2:2012). Total metal determination in the sediments was performed by ICP-OES. The medium lethal earthworm concentration (LC50) was estimated through PriProbit analysis. The sediments from the APA of Guapimirim, which is a control area at the Guanabara Bay, were the only ones whose total metal concentrations were in agreement with the limits established by Brazilian law for land disposal of dredged sediments. However, the sediments collected in the APA of Guapimirim were the most toxic ones among the study areas due to very high contents of salts in these materials. Winter sediments were generally more toxic compared to the summer ones due to the increase of metal concentrations and salt precipitation to bottom sediments during the winter. The exceptions were (i) the sediments from APA of Guapimirim, where the toxicity in the summer (LC50 = 3.99%) and winter (LC50 = 4.60%) were relatively similar to each other, since the toxicity is linked to salt in excess; and (ii) the Iguaçu River mouth, where the presence of mangrove areas might be associated with the filtering of pollution sources (winter LC50 = 12.67%; summer LC50 = 11.58%). In the Port of Rio de Janeiro, LC50 obtained in the winter (7.30%) was almost three times lower than that found in the summer (19.64%). The sediments from Meriti River mouth showed the highest total metal concentrations, were the most toxic sediments among the study areas (excluding the APA of Guapimirim), and its winter LC50 (6.64%) was almost twice lower than that obtained in the summer (12.55%). By following the same tendency, summer LC50 (17.52%) found for the sediment collected in the Port of Niterói was also higher than the value found in the winter (12.34%). Finally, the dredged sediments from Guanabara Bay were toxic to earthworms in mixtures with pure ferralsol and winter samples were generally more toxic than the summer ones, in agreement with the increase of metal and salt concentrations during the winter.


Assuntos
Ecotoxicologia/métodos , Sedimentos Geológicos , Metais/análise , Oligoquetos/efeitos dos fármacos , Animais , Baías , Brasil , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Metais/toxicidade , Rios , Estações do Ano , Solo/química , Análise Espaço-Temporal , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise , Áreas Alagadas
5.
Eng. sanit. ambient ; 20(2): 181-189, abr.-jun. 2015. tab, ilus
Artigo em Português | LILACS | ID: lil-759309

RESUMO

A ecotoxicidade associada à disposição continental de sedimentos de dragagem (oriundo da Baía de Guanabara, Rio de Janeiro) em latossolos e chernossolos foi estudada através de bioensaios agudos com o cladócero Daphnia similis e o oligoqueta Eisenia andrei; e de bioensaios crônicos com a alga doce Pseudokirchneriella subcaptata. Os teores de metais no dragado estavam acima dos preconizados pela legislação brasileira para disposição de materiais dragados. Os bioensaios empregados sugerem níveis maiores de toxicidade para as misturas de latossolo:dragado, em comparação aos tratamentos de chernossolo:dragado. No caso do chernossolo, a abundância de argilominerais 2:1, associada à alta fertilidade, parece ser capaz de reduzir a ecotoxicidade potencial. Em latossolo, mesmo as menores dosagens de aplicação de sedimento (3,33 e 6,66%) foram capazes de provocar efeitos adversos significativos aos microcrustáceos e às algas. Em misturas de chernossolo, efeitos significativos foram observados somente para doses de 6,58 e 13,16% para microcrustáceos e algas, respectivamente. Tais dados indicaram a ocorrência potencial de risco ecotoxicológico para as comunidades aquáticas vizinhas em cenários em que solos misturados com materiais dragados pudessem ser lixiviados e soluções tóxicas atingissem sistemas fluviais vizinhos. O ensaio agudo de papel de contato com E. andrei também acusou a ocorrência potencial de efeitos adversos sobre a fauna edáfica, a partir das doses de 13,12 e 19,74% em latossolo e chernossolo, respectivamente. O emprego do referido ensaio parece ser extremamente promissor no monitoramento da ecotoxicidade potencial de solos impactados pela disposição de resíduos sólidos e/ou contaminados por metais.


Potential ecotoxicity associated with the disposal of dredged sediments (from the Guanabara Bay, Rio de Janeiro, Brazil) in ferralsols and chernosols was studied through acute bioassays with micro-crustaceans (Daphnia similis) and earthworms (Eisenia andrei); and through chronic assays with algae (Pseudokirchenriella subcaptata). Total metal concentrations in the sediment were higher than the limits established by Brazilian legislation for dredged sediment disposal. The bioassays suggest the occurrence of more significant effects on ferralsols mixtures compared to chernosols treatments. In chernosol mixtures, the abundance of 2:1 clay minerals is apparently able to reduce the ecotoxicity. In ferralsol mixtures, lower dosages of sediment application (3.33 and 6.66%) caused significant effects on micro-crustaceans and algae. In chernosol treatments, adverse effects on in micro-crustaceans and algae were only observed for the doses of 6.58 and 13.16%, respectively. Such data indicate occurrence of potential risks on aquatic biota in the scenario where sediment-amended soils could be leached and such solutions could contaminate surrounding fluvial systems. The bioassay with E. andrei using contact paper also suggests the occurrence of potential adverse effects on edaphic biota. In addition, such tests with E. andrei demonstrate that they are highly applicable as alternative tools to monitor potential ecotoxicity associated with terrestrial disposal of solid residues containing domestic wastes and/or contaminated with metals.

6.
Environ Sci Pollut Res Int ; 22(4): 2916-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25223356

RESUMO

Metal reference values established in Brazilian legislation for terrestrial disposal of dredged sediments and soil quality were derived for temperate regions. To evaluate the adequacy of such metal reference values to tropical soils, the ecotoxicity of a dredged sediment (from the Guanabara bay, Rio de Janeiro, Brazil) was investigated in two local soils (ferralsol and chernosol) by performing avoidance and reproduction tests using Folsomia candida and Enchytraeus crypticus. Test doses consisted of 0 %, 1.25 %, 2.5 %, 5, 10 %, and 20 %. Total and potentially bioavailable metal concentrations were determined in the test mixtures. Although the chernosol mixtures had the highest total metal concentrations, the influence of the expansive clay minerals (with high ability to adsorb metals) and the high contents of nutrients typical from this type of soils, seem to reduce the ecotoxicity. Collembolan avoidance behavior was the least sensitive endpoint. The lowest sediment doses increased the reproduction of F. candida in ferralsol mixtures. E. crypticus reproduction in the ferralsol mixtures were more pronounced at lower concentrations than in chernosol mixtures. Possibly the low nutrient content of the ferralsols, in connection with the addition of small amounts of sediment, created particular conditions that promoted reproduction of the test species. Data obtained in the ecotoxicological tests may support the establishment of a "safe" ecological dose of dredged sediments to be applied in tropical soils, supporting decision-makers in programs of environmental management.


Assuntos
Artrópodes/efeitos dos fármacos , Metais/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Gerenciamento de Resíduos/métodos , Animais , Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Bioensaio , Brasil , Ecotoxicologia , Sedimentos Geológicos , Metais/análise , Oligoquetos/fisiologia , Reprodução/efeitos dos fármacos , Solo , Poluentes do Solo/análise
7.
Ecotoxicology ; 24(2): 414-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25427718

RESUMO

The ecotoxicity of a dredged sediment from the Guanabara Bay (Rio de Janeiro, RJ, Brazil) was evaluated using reproduction tests with Eisenia andrei, Folsomia candida and Enchytraeus crypticus, and avoidance and feeding inhibition tests with Folsomia candida. The sediment was mixed with artificial soil to obtain the following doses: 1.25, 2.5, 5.0, 10.0, 20.0 and 40.0 %. Lead, nickel, chromium, copper and zinc concentrations were determined in the test mixtures. In reproduction tests, E. andrei was the most sensitive species (EC50 = 2.94 %), followed by F. candida (EC50 = 7.72 %) and E. crypticus (EC50 = 10.10 %). The percentage of initial weight of earthworms was significantly higher in all test concentrations compared to the control except at the highest one where earthworms biomass significantly decreased. No feeding inhibition of F. candida was observed for any test mixture and the number of organisms with a dark gut (the fed collembolans) generally increased with the increasing dose of sediment. Significant avoidance responses of F. candida were observed towards all test mixtures, however, the avoidance behaviour was the less sensitive endpoint after feeding inhibition. The results showed that chemical analysis is not sufficient to foresee toxic effects in terrestrial systems resulting from sediment disposal in soil if not complemented with an ecotoxicological evaluation.


Assuntos
Artrópodes/efeitos dos fármacos , Sedimentos Geológicos/análise , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Testes de Toxicidade/métodos , Animais , Baías , Brasil
8.
Environ Monit Assess ; 186(3): 1487-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24122142

RESUMO

The upper limit concentrations of metals established by international legislations for dredged sediment disposal and soil quality do not take into consideration the properties of tropical soils (generally submitted to more intense weathering processes) on metal availability and ecotoxicity. Aiming to perform an evaluation on the suitability of these threshold values in tropical regions, the ecotoxicity of metal-contaminated dredged sediment from the Guanabara Bay (Rio de Janeiro, Brazil) was investigated. Acute and avoidance tests with Eisenia andrei were performed with mixtures of dredged sediment with a ferralsol (0.00, 6.66, 13.12, 19.98, and 33.30 %) and a chernosol (0.00, 6.58, 13.16, 19.74, and 32.90 %). Mercury, lead, nickel, chromium, copper, and zinc concentrations were measured in test mixtures and in tissues of surviving earthworms from the acute tests. While ferralsol test mixtures provoked significant earthworm avoidance response at concentrations ≥13.31 %, the chernosol mixtures showed significant avoidance behavior only at the 19.74 % concentration. The acute tests showed higher toxicity in ferralsol mixtures (LC50 = 9.9 %) compared to chernosol mixtures (LC50 = 16.5 %), and biomass increased at the lowest sediment doses in treatments of both test soils. Most probably, the expansive clay minerals present in chernosol contributed to reduce metal availability in chernosol mixtures, and consequently, the ecotoxicity of these treatments. The bioconcentration factors (BCF) for zinc and copper were lower with increasing concentrations of the dredged sediment, indicating the existence of internal regulating processes. Although the BCF for mercury also decreased with the increasing test concentrations, the known no biological function of this metal in the earthworms metabolism lead to suppose that Hg measured was not present in bioaccumulable forms. BCFs estimated for the other metals were generally higher in the highest dredged sediment doses.


Assuntos
Sedimentos Geológicos/química , Metais/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Animais , Brasil , Ecotoxicologia , Monitoramento Ambiental , Oligoquetos , Eliminação de Resíduos , Navios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...